Hamiltonian properties of triangular grid graphs
نویسندگان
چکیده
A triangular grid graph is a finite induced subgraph of the infinite graph associated with the two-dimensional triangular grid. In 2000, Reay and Zamfirescu showed that all 2-connected, linearly convex triangular grid graphs (with the exception of one of them) are hamiltonian. The only exception is a graph D which is the linearlyconvex hull of the Star of David. We extend this result to a wider class of locally connected triangular grid graphs. Namely, we prove that all connected, locally connected triangular grid graphs (with the same exception of graph D) are hamiltonian. Moreover, we present a sufficient condition for a connected graph to be fully cycle extendable. 2000 Mathematics Subject Classification: 05C38 (05C45, 68Q25).
منابع مشابه
Hamiltonian Cycles in Triangular Grids
We study the Hamiltonian Cycle problem in graphs induced by subsets of the vertices of the tiling of the plane with equilateral triangles. By analogy with grid graphs we call such graphs triangular grid graphs. Following the analogy, we define the class of solid triangular grid graphs. We prove that the Hamiltonian Cycle problem is NPcomplete for triangular grid graphs. We show that with the ex...
متن کاملComplexity of the Hamiltonian Cycle Problem in Triangular Grid Graphs
A triangular grid graph is a finite induced subgraph of the infinite graph associated with the two-dimensional triangular grid. We show that the problem Hamiltonian Cycle is NP-complete for triangular grid graphs, while a hamiltonian cycle in connected, locally connected triangular grid graph can be found in polynomial time. 2000 Mathematics Subject Classification: 05C38 (05C45, 68Q25).
متن کاملThe Hamiltonian properties of supergrid graphs
In this paper, we first introduce a novel class of graphs, namely supergrid. Supergrid graphs include grid graphs and triangular grid graphs as their subgraphs. The Hamiltonian cycle and path problems for grid graphs and triangular grid graphs were known to be NP-complete. However, they are unknown for supergrid graphs. The Hamiltonian cycle (path) problem on supergrid graphs can be applied to ...
متن کاملThe Hamiltonian Problems on Supergrid Graphs
In this paper, we first introduce a novel class of graphs, namely supergrid. Supergrid graphs include grid graphs and triangular grid graphs as their subgraphs. The Hamiltonian cycle and path problems for grid graphs and triangular grid graphs were known to be NP-complete. However, they are unknown for supergrid graphs. The Hamiltonian cycle (path) problem on supergrid graphs can be applied to ...
متن کاملThe Hamiltonian Connected Property of Some Shaped Supergrid Graphs
A Hamiltonian path (cycle) of a graph is a simple path (cycle) which visits each vertex of the graph exactly once. The Hamiltonian path (cycle) problem is to determine whether a graph contains a Hamiltonian path (cycle). A graph is called Hamiltonian connected if there exists a Hamiltonian path between any two distinct vertices. Supergrid graphs were first introduced by us and include grid grap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 308 شماره
صفحات -
تاریخ انتشار 2008